Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сахалинский государственный университет»

Кафедра математики

РАБОЧАЯ ПРОГРАММА

Дисциплины

Б.1.О.07.17. Уравнения математической физики

Уровень высшего образования БАКАЛАВРИАТ

Направление подготовки

44.03.05 Педагогическое образование (с двумя профилями)

профиль

Математика и физика

Квалификация

<u>Бакалавр</u>

Форма обучения

очная

РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

Южно-Сахалинск, 2021 г.

Рабочая программа дисциплины «Уравнения математической физики» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки)

Программу составил:

Чуванова Г.М., доцент кафедры математики

Myl

Рабочая программа дисциплины утверждена на заседании кафедры математики, протокол № 11 от 17.06. 2021 г.

Заведующий кафедрой математики

подпись

Н. А. Самсикова

Рецензент(ы):

Середа Т.Ю., заместитель директора МАОУ СОШ № 8 им. генерал-лейтенанта В. Г. Асапова г. Южно-Сахалинска

подпись

1. Цели и задачи дисциплины

Цель - ознакомление студентов с методами построения математических моделей различных процессов и явлений естествознания и экономики, изучение основных методов исследования возникающих при этом математических задач, выяснение содержательного смысла полученных решений;

Задачи дисциплины:

- Передать студентам устойчивые навыки построения моделей математической физики;
- Обучить студентов теории дифференциальных уравнений с частными производными;
- Научить студентов методом исследования математических задач, возникающих в процессе математического моделирования в естествознании и экономике;
- Передать опыт математического моделирования процессов в технике и экономике при помощи уравнений в частных производных;
- Развить у студентов аналитическое мышление и общую математическую культуру;
- Научить студентов уметь формулировать содержательные выводы из математических результатов;
- Приучить студентов самостоятельно изучать учебную и научную литературу в области математики и математической физики

2. Место дисциплины в структуре образовательной программы

Уравнения математической физики является дисциплиной базовой части блока дисциплин Б1 ОПОП направления 44.03.05 Педагогическое образование (с двумя профилями подготовки), профиль математика и физика (Б1.О.07.17).

Пререквизиты дисциплины: математический анализ, дифференциальные уравнения, теория функций комплексного переменного.

Постреквизиты дисциплины:государственный экзамен.

3. Формируемые компетенции и инликаторы их лостижения по лисциплине

Код	Содержание	Код и наименование индикатора до-
компетенции	компетенции	стижения компетенции
УК-1	способен осуществлять по-	УК-1.1.
	иск, критический анализ и	Знает: методы критического анализа и
	синтез информации, приме-	оценкисовременных научных дости-
	нять системный подход для	жений; основныепринципы критиче-
	решения поставленных задач	ского анализа.
		УК-1.2.
		Умеет: получать новые знания на ос-
		новеанализа, синтеза и других мето-
		дов; собиратьданные по сложным
		научным проблемам,относящимся к
		профессиональной обла-
		сти;осуществлять поиск информации
		и решений наоснове эксперименталь-
		ных действий.
		УК-1.3.
		Владеет: исследованием проблем
		профессиональной деятельности с
		применением анализа, синтеза и дру-
		гихметодов интеллектуальной дея-

		тельности; выявлением научных про- блем ииспользованием адекватных методов для ихрешения; демонстри- рованием оценочных суждений в ре- шении проблемных профессиональных ситуаций.
ОПК-8.	Способен осуществлять пе-	ОПК-8.1.
ОПК-8.	Способен осуществлять педагогическую деятельность на основе специальных научных знаний.	
		ра, формирования у обучающихся

		культуры здорового и безопасного образа жизни.
ПКС-4	способенформировать развивающую образовательную среду для достижения личностных, предметных и метапредметных результатов обучения средства преподаваемых учебных предметов	ПКО-4.1. моделирует и проектирует образовательную среду для формирования результатов обучения, в том числе в предметной области среднего образования «Математика» ,в целях достижения личностных, предметных и метапредметных результатов обучения ПКО-4.2. применяет принципы междисциплинарного подхода для достижения метапредметных и предметных результатов в предметных областижения метапредметных областях среднего образования «Математика» ПКО-4.3. использует технологии личностного развития, знания в области математического мышления, формируемого учебными пособиями по математике для достиженияличностных результатовучащихся.
ПКС-7	Способен выделять структурные элементы, входящие в систему познания предметной области (в соответствии с профилем и уровнем обучения), анализировать х в единстве содержания, форы и выполняемых функций	ПКС-7.1. выделяет и анализирует единицы различных уровней математики в единстве их содержания, формы и функций ПКС-7.2. выделяет и анализирует явления разных уровней математики в их структурном единстве и функциях ПКС-7.3. знает и умеет анализировать организацию систему математических понятий, определений, теорем и их следствий
ПКС-9	Способен устанавливать содержательные, методологические и мировоззренческие связи предметной области (в соответствии с профилем и уровнем обучения) со смежными научными областями	ПКС-9.1. Знать: содержательные, методологические и мировоззренческие связи предметной области со смежными научными областями ПКС-9.2. Уметь: устанавливать содержательные, методологические и мировоззренческие связи предметной области со смежными научными областями. ПКС-9.3. Владеть: технологиями определения содержательных, методологических и мировоззренческих связей предметной области со смежными научными области со смежными научными области со смежными научными области со смежными научными областями

4. Структура и содержание дисциплины

4.1. Структура дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа.

Вид учебной работы	Трудоемкость, акад. часов	
	Всего по	семестр
	уч. плану	9
Общая трудоемкость	72	72
Контактная работа:	48	48
Лекции (ЛК)	14	14
практические занятия (ПЗ)	30	30
Контактная работа в период теоретического обучения (Конт ТО)	4	4
Самостоятельная работа:	24	24
- выполнение индивидуальных заданий;		
- самоподготовка (проработка и повторение лекционного материала		
и материала учебников и учебных пособий);		
- подготовка к практическим занятиям;		
- подготовка к промежуточной аттестации;		
Виды промежуточного контроля		
(экзамен, зачет)		

4.2. Распределение видов работы и их трудоемкости по разделам дисциплины

Очная форма обучения

<u>№</u>	Раздел дисциплины /темы		1 - 1			Формы текущего кон-
п/п			ты (в часах) контактная			троля успеваемости, промежуточной атте-
			KOIII		-К(стации
		семестр	Лекции	Практи- ческие занятия	Самостоя- тельная	
1	Ряды Фурье.	9	2	2	3	Практическое задание
2	Интеграл Фурье	9	2	2	3	Практическое задание
3	Элементы теории поля.	9	2	6	3	Практическое задание,
4	Основные типы уравнений математической физики. Приведение уравнений с частными производными второго порядка к каноническому виду.	9	2	6	3	Практическое задание
5	Уравнения гиперболического типа (на примере уравнения колебания струны)	9	2	4	3	Практическое задание, контрольная работа
6	Уравнения параболического типа (уравнения теплопроводности)	9	2	4	3	Практическое задание, контрольная работа
7	Уравнения эллиптического типа (уравнения равновесия)	9	2	4	3	Практическое задание, контрольная работа

8	Задача Дирихле.	9	2	3	Практическое задание
	Зачет				

4.3. Содержание разделов дисциплины.

Тема 1. Ряды Фурье.

Определение ряда Фурье. Вычисление коэффициентов Фурье для кусочно-монотонной и ограниченной функции на отрезке [a,b]. Ряд Фурье для чётных и нечётных функций. Ряд Фурье для функции с периодом 2π , разложение в ряд Фурье непериодической функции на промежутке [a,b].

Тема 2. Интеграл Фурье.

Интеграл Фурье. Синус и косинус преобразования Фурье. Интеграл Фурье в комплексной форме.

Тема 3. Элементы теории поля.

Скалярное поле. Производная по направлению и градиент скалярного поля. Градиент в цилиндрической, полярной и сферической системе координат. Дивергенция векторного поля. Дивергенция в цилиндрической и сферической системе координат. Ротор векторного поля, его выражение в цилиндрической и сферической системе координат. Лапласиан, его выражение в декартовой, цилиндрической и сферической системе координат. Интегральные теоремы Стокса и Остроградского-Гаусса.

Тема 4. Основные типы уравнений математической физики. Приведение уравнений с частными производными второго порядка кканоническому виду.

Основные понятия уравнений математической физики. Основные примеры уравнений математической физики (волновые уравнения, уравнение теплопроводности, уравнения равновесия). Общий вид дифференциальных уравнений второго порядка в частных производных в случае 2-х независимых переменных. Классификация уравнений с частными производными второго порядка. Привидение к каноническому виду, уравнение характеристик. Понятие о корректно и некорректно поставленных задачах. Постановка краевых задач для линейного дифференциального уравнения второго порядка

Тема 5. Уравнения гиперболического типа (на примере уравнения колебаний струны) Задача Коши для уравнения колебаний. Существование и единственность решения. Свободные колебания бесконечной струны. Задача Коши, решение Даламбера.Свободные колебания конечной струны. Метод разделения переменных (Фурье).Вынужденные колебания конечной струны. Стоячие волны.Собственные значения и собственные функции задачи Штурма-Лиувилля.

Тема 6. Уравнения параболического типа (уравнения распространения тепла)

Вывод уравнения распределения тепла в однородном стержне. Постановка основ-ных задач. Существование и единственность решения. Принцип максимума. Фундаментальное решение уравнения теплопроводности. Формула Пуассона. Особенности применения метода разделения переменных

Тема 7. Уравнения эллиптического типа (уравнения равновесия⁻)

Задачи, приводящие к исследованию решений уравнений Лапласа и Пуассона. Постановка основных краевых задач для уравнений эллиптического типа. Фундаментальное решение уравнения Лапласа. Свойства гармонических функций.

Тема 8. Задача Дирихле.

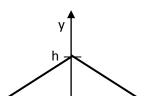
Уравнение Лапласа в цилиндрической системе координат. Решение задачи Дирихле для круга и шара. Решение задачи Дирихле для кольца. Задача Неймана для круга

4.4. Темы и планы практических занятий

- 1. Ряды Фурье.
 - 1) Тригонометрический ряд Фурье.
 - 2) Ряд Фурье для чётных и нечётных функций.

- 3) Ряд Фурье для функции с периодом 2π .
- 4) Ряд Фурье непериодической функции на промежутке [a,b].
- 2. Интеграл Фурье.
 - 1) Интеграл Фурье.
 - 2) Синус и косинус преобразования Фурье.
 - 3) Интеграл Фурье в комплексной форме.
- 3. Элементы теории поля.
 - 1) Производная по направлению и градиент скалярного поля.
 - 2) Градиент в цилиндрической, полярной и сферической системе координат.
 - 3) Дивергенция векторного поля.
 - 4) Дивергенция в цилиндрической и сферической системе координат.
 - 5) Ротор векторного поля, его выражение в цилиндрической и сферической системе координат.
 - 6) Лапласиан, его выражение в декартовой, цилиндрической и сферической системе координат.
- 4. Приведение уравнений с частными производными
 - 1) Классификация уравнений с частными производными.
 - 2) Привидение к каноническому виду, уравнение характеристик.
- 5. Уравнение колебания струны.
 - 1) Задача Коши для уравнения колебаний.
 - 2) Свободные колебания конечной струны.
 - 3) Метод разделения переменных (Фурье).
 - 4) Вынужденные колебания конечной струны.
- 6. Уравнения теплопроводности.
 - 1) Вывод уравнения распределения тепла в однородном стержне.
 - 2) Фундаментальное решение уравнения теплопроводности.
 - 3) Формула Пуассона.
- 7. Уравнения равновесия.
 - 1) Постановка основных краевых задач для уравнений эллиптического типа.
 - 2) Фундаментальное решение уравнения Лапласа.
- 8. Задача Дирихле.
 - 1) Уравнение Лапласа в цилиндрической системе координат.
 - 2) Решение задачи Дирихле для круга и шара.
 - 3) Решение задачи Дирихле для кольца.
 - 4) Задача Неймана для круга

Пример практического занятия


Занятие № 2. Интеграл Фурье.

1. Представить функцию в виде интеграла Фурье:

Представить функцию в в а)
$$f(x) = \begin{cases} -e^{-x}; x < 0, \\ e^{-x}; x \ge 0. \end{cases}$$
 (2; $0 < x < 3,$ 6) $f(x) = \begin{cases} 1, x = 3, \\ 0, x > 3. \\ 0; x < 0, \end{cases}$ (B) $f(x) = \begin{cases} 0; x < 0, \\ \pi x; 0 \le x \le 1, \\ 0; x > 1. \end{cases}$

- 2. Найти спектральную характеристику функции. Построить график спектра.
 - a) $f(x) = e^{-ax}$, x > 0, a > 0.

б)

Указания по выполнению заданий:

- 1. Вычислить интеграл Фурье.
- 2. Вычислить спектральную характеристику функции.

Занятие. Гиперболические уравнения.

- 1. Найти решение уравнения $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, удовлетворяющее начальным условиям $u(x,0)=x^2,\; u_t'(x,0)=0.$
- 2. Найти решение уравнения $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$, удовлетворяющее начальным условиям u(x,0) = 0, $u_t'(x,0) = x$.
- 3. Струна длины l закреплена на концах и изогнута так, что принимает форму лыu = x(l-x)и отпущена без начальной скорости. Найти закон колебаний струны.
- 4. Найти вынужденные колебания струны без начальных смещений и скоростей, если на струну действует равномерно распределенная сила $f(x,t) = A\rho \sin \omega t \ (\rho$ линейная плотность струны).

5. Темы дисциплины для самостоятельного изучения

Не планируется

6. Образовательные технологии

В процессе преподавания дисциплины используются как классические формы и методы обучения (лекции, практические занятия), так и интерактивные методы обучения.

<u>Интерактивные формы обучения</u>: технология проблемного обучения, технология учебного исследования, работа в малых группах, тренинг.

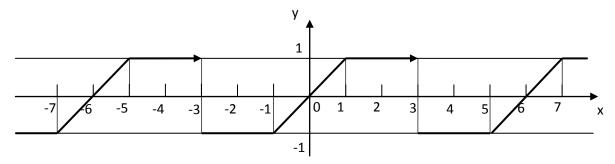
No	Наименование раздела	Виды учебных занятий	Образовательная техноло-
Π/Π	тапменование раздела	Виды у теоных запитии	гия
1.	Ряды Фурье. Интеграл	Лекция № 1	Лекция
1.	Фурье.	Практическое занятие № 1	Практическое занятие
		Самостоятельная работа	Консультирование и про-
		Самостоятельная раоота	
2	Интеграл Фурье.	П М- 1	верка домашних заданий
2.	интеграл Фурве.	Лекция № 1	Лекция
		Практическое занятие № 1	Практическое занятие
		Самостоятельная работа	Консультирование и про-
			верка домашних заданий
3.	Элементы теории поля.	Лекция № 1	Лекция
		Практическое занятие № 1	Практическое занятие
		Практическое занятие № 2	Практическое занятие
		Практическое занятие № 3	Практическое занятие
		Самостоятельная работа	Консультирование и про-
			верка домашних заданий
3	Основные типы урав-	Лекция № 1	Лекция
	нений математической	Практическое занятие № 1	Практическое занятие
	физики. Приведение	Практическое занятие № 2	Практическое занятие

	уравнений с частными производными второго порядка к каноническому виду.	Практическое занятие № 3 Самостоятельная работа	Практическое занятие Консультирование и про- верка домашних заданий
	Уравнения гипербо- лического типа (на примере уравнения колебания струны)	Лекция № 1 Практическое занятие № 1 Практическое занятие № 2 Самостоятельная работа	Лекция Практическое занятие Практическое занятие Консультирование и проверка домашних заданий
5	Уравнения параболического типа (уравнения теплопроводности)	Лекция № 1 Практическое занятие № 1 Практическое занятие № 2 Самостоятельная работа	Лекция Практическое занятие Практическое занятие Консультирование и проверка домашних заданий
6	Уравнения эллиптического типа (уравнения равновесия)	Лекция № 1 Практическое занятие № 1 Практическое занятие № 2 Самостоятельная работа	Лекция Практическое занятие Практическое занятие Консультирование и проверка домашних заданий
7	Задача Дирихле.	Практическое занятие № 1 Самостоятельная работа	Практическое занятие Консультирование и про- верка домашних заданий

7.Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по дисциплине

Индивидуальные задания Индивидуальное задание № 1 «Ряды Фурье»

Вариант № 1


1. Разложить в ряд Фурье периодическую (с периодом $\omega = 2\pi$) функцию f(x) , заданную на отрезке $[-\pi;\pi]$.

$$f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ x - 1, & 0 \le x \le \pi. \end{cases}$$

2. Разложить в ряд Фурье функцию f(x), заданную в интервале $(0; \pi)$, продолжив (доопределив) ее четным и нечетным образом. Построить графики для каждого продолжения.

$$f(x) = e^x$$
.

3. Разложить в ряд Фурье функцию, заданную графически.

Домашнее задание № 2.

1. Представить функцию в виде интеграла Фурье:

$$f(x) = \begin{cases} 1; \ -1 < x < 0, \\ \frac{1}{2}; x = -1; \ 0; 1, \\ x; \ 0 < x < 1, \\ 0; \ |x| > 1. \end{cases}$$
2. Представить функцию в виде интеграла Фурье:
$$\begin{cases} 1 + x; \ -1 < x < 0, \\ 0, \ |x| > 1, \end{cases}$$

1)
$$f(x) = \begin{cases} 1+x; & -1 < x < 0, \\ 1-x; & 0 \le x < 1, 2 \end{cases} f(x) = \begin{cases} 1; & |x| < 1, \\ \frac{1}{2}; & |x| = 1, \\ 0; & x \ge 1. \end{cases}$$

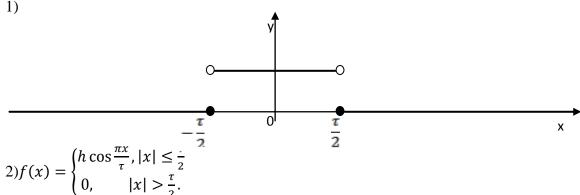
 $\begin{cases} |x|; & |x| < 1, \\ (\cos x); & \cos x < 1, 2 \end{cases}$

$$(0; x \ge 1).$$

$$(0; |x| > 1).$$

$$f(x) = \begin{cases} \sin x; & |x| \le \pi, \\ 0; & |x| > \pi. \end{cases}$$
 $6) f(x) = \begin{cases} \operatorname{sgn} x; & |x| \le 1, \\ 0; & |x| > 1. \end{cases}$

$$7)f(x) = \begin{cases} x; & |x| > 1. \\ 0; & |x| > 1. \end{cases}$$


$$8) f(x) = \begin{cases} 1; & 0 < x < a, \\ 0; & x \ge a. \end{cases}$$

$$(\pi \omega \delta \omega e n p \omega \delta \sigma x \varepsilon e h u e).$$

$$9)(x) = \begin{cases} \cos x; & 0 < x < \pi, \\ 0; & x \ge \pi. \end{cases}$$

(любоепродолжение).

3. Найти спектральную характеристику функции:

Индивидуальное задание № 3. Элементы теории поля.

- 1. Построить линии уровня плоского поля:
 - 1) $u = \sin(x^2 y^2)$.
- 2. Построить поверхности уровня скалярного поля:
 - 1) $u = arctg \frac{\sqrt{x^2 + y^2}}{2}.$
- **3**. Найти производную функции u = f(x; y; z) в точке A в направлении вектора \vec{l} :
- 1) $u=(x^2+y^2+z^2)^{\frac{3}{2}}$, A (1; 1; 1), $\vec{l}=\vec{\iota}-\vec{j}+\vec{k}$. 4. Найти градиент скалярного поля u(x;y;z) в точкеA:
 - 1) $u = x^2 y^2 + yz z$, A(1; 0; -1).
- 1) u = x y + yz z, A(1, 0, -1). 5. Найти угол между градиентами скалярных полей u = u(x; y; z), v = v(x; y; z) в точкеA:

1)
$$u = \frac{x^2}{2} + 6y^2 + 3\sqrt{6}z^2$$
, $v = \frac{yz^2}{x^2}$, $A(\sqrt{2}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}})$.

6. 1)В каких точках пространства градиент скалярного поля $u = \frac{1}{2}x^2 - x + \frac{1}{2}y^2$ перпендикулярен вектору \vec{a} (2; 4)?

7. Найти векторные линии следующих векторных полей:

1)
$$\vec{a} = \frac{1}{x}\vec{i} + \frac{1}{y}\vec{j} + \frac{1}{z}\vec{k}$$
.

8. Вычислить дивергенцию векторного поля \vec{a} в точке *A*:

1)
$$\vec{a} = xy\vec{i} + yz\vec{j} + xz\vec{k}$$
, $A(2; 1; 3)$,

9. Проверить соленоидальность векторного поля:

$$1)\vec{a} = 3z(x^2 + y^2)\vec{i} - 2y(x^2 + z^2)\vec{j} + 4x(y^2 + z^2)\vec{k},$$

10. Вычислить ротор векторного поля \vec{a} :

1)
$$\vec{a} = yz\vec{\imath} + xy\vec{\jmath} + xy\vec{k}$$
.

11. Вычислить ротор векторного поля \vec{a} , заданного в цилиндрических или сферических координатах, в точке A:

1)
$$\vec{a} = \cos \varphi \, \overrightarrow{e_r} + \frac{\sin \varphi}{r} \overrightarrow{e_\varphi} - rz \overrightarrow{e_z}$$
, $A(\frac{1}{2}; \pi; 2)$.

12. Проверить потенциальность векторного поля: 1)
$$\vec{a} = (10xy - 3y^3)\vec{i} + (5x^2 - 9xy^2 + 4y^2)$$
.

Индивидуальное задание № 4. Приведение уравнений к каноническому виду.

1) Привести уравнение с частными производными к каноническому виду:

1.
$$4y^2u_{x^2}^{"} - e^{2x}u_{xy}^{"} - 4y^2u_{y^2}^{"} = 0.$$

2) Привести уравнение с частными производными к каноническому виду: 1. $e^{2x}u_{x^2}^{"} + 2e^{x+y}u_{xy}^{"} + e^{2y}u_{y^2}^{"} - xy = 0.$

1.
$$e^{2x}u_{x^2}^{"} + 2e^{x+y}u_{xy}^{"} + e^{2y}u_{y^2}^{"} - xy = 0.$$

3) Привести уравнение с частными производными к каноническому виду:

1.
$$(1+x^2)u_{x^2}^{"} + (1+y^2)u_{y^2}^{"} + xu_x^{'} + yu_y^{'} - 2u = 0.$$

4) Привести уравнение с частными производными к каноническому виду: $1.~u_{x^2}^{''}+~u_{xy}^{''}-2u_{y^2}^{''}-3u_x^{'}-15~u_y^{'}+27x=0.$

$$1. u_{x^2}^{"} + u_{xy}^{"} - 2u_{y^2}^{"} - 3u_x' - 15 u_y' + 27x = 0.$$

Индивидуальное задание № 5. Гиперболические уравнения.

- 1. Найти методом Даламбера:
 - 1) решение уравнения $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, удовлетворяющее начальным условиям u(x,0) = x, $u_t'(x,0)=-x.$
- 2. Решить уравнение колебания струны:

Струна длины l закреплена на концах и изогнута так, что принимает форму лыu = x(l - x), и отпущена без начальной скорости. Найти закон колебаний струны.

3. Решить первую смешанную задачу для волнового уравнения на отрезке:

1)
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < 1$, $0 < t < \infty$, $u(x, 0) = x(x - 1)$, $u'_t(x, 0) = 0$, $u(0, t) = u(1, t) = 0$.

Индивидуальное задание № 6. Параболические уравнения.

1. Решить смешанную задачу:

$$\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}, u(x,0) = 3\cos 3\pi x + 4\cos 4\pi x, \qquad u(0,t) = u(7,t) = 0.$$

2. Решить смешанную задачу:

$$\frac{\partial u}{\partial t} = 16 \frac{\partial^2 u}{\partial x^2}, \qquad u(0,t) = u(3,t) = 0, u(x,0) = \begin{cases} \frac{x^2}{3}, 0 \le x \le \frac{3}{2}, \\ 3 - x, \frac{3}{2} < x \le 3 \end{cases}$$

3. Решить смешанную задачу:

$$\frac{\partial u}{\partial t} = 7 \frac{\partial^2 u}{\partial x^2}, u(x,0) = 6 \sin 3\pi x + 8 - 3x, \qquad u(0,t) = 8, u(4,t) = -4.$$

4. Решить смешанную задачу для данного неоднородного уравнения теплопроводности с нулевыми начальными и граничными условиями $u(x,0) = u(0,t) = u(\pi,t) = 0$.

$$1\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2} + 10\cos 3x \sin 4t$$

5. Решить смешанную задачу.

$$\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2} + 10 \cos 3x \sin 4t,$$

$$u(x,0) = 4 \sin 8x - 2\pi + x, \qquad u(0,t) = -2\pi, \qquad u(\pi,t) = -\pi$$

Контрольная работа.

Вариант № 1

- 1. Найти методом Даламбера решение уравнения $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, удовлетворяющее начальным условиям u(x,0) = x, $u_t'(x,0) = -x$.
 - 2. Решить уравнение колебания струны:

Струна длины l закреплена на концах, начальное отклонение равно нулю, а начальная скорость имеет вид u = x(l-x). Найти закон колебаний струны.

3. Решить первую смешанную задачу для волнового уравнения на отрезке:

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, 0 < x < 1, 0 < t < \infty, u(x, 0) = x(x - 1), u'_t(x, 0) = 0,$$
$$u(0, t) = u(1, t) = 0.$$

Темы рефератов:

- 1. Дифференциальные уравнения продольных колебаний однородного стержня постоянного сечения (1, гл. 5, § 1).
- 2. Колебания стержня с одним закрепленным концом (1, гл. 5, § 2).
- 3. Продольный удар груза по стержню (1, гл. 5, § 3).
- 4. Вынужденные колебания тяжелого стержня (1, гл. 9, § 2).
- 5. Вынужденные колебания струны с подвижными концами (1, гл. 9, § 3).
- 6. Колебания стержня с одним прикрепленным диском (1, гл. 10, § 1,2).
- 7. Решение уравнения колебания прямоугольной мембраны (2, гл. 2, § 9).
- 8. Решение уравнения колебания круглой мембраны (2, гл. 2, § 10).
- 9. Плоская задача Дирихле (для круга) (1, гл. 2, § 12).
- 10. Распространение тепла в прямоугольной пластине (1, гл. 18, § 6).
- 11. Распространение тепла в однородном шаре (1, гл. 18, § 5).
- 12. Решение задачи об остывании бесконечного круглого сечения (1, ч.3, гл. 2, § 11).

Формой аттестации по дисциплине в седьмом семестре согласно учебному плану является зачет. На экзамен выносятся темы, изученные в рамках семестра. Каждому студенту необходимо дать ответ на 1 теоретический вопрос и решить задачу.

Перечень вопросов к зачету

- 1. Понятие тригонометрического ряда.
- 2. Интегралы от некоторых тригонометрических функций.
- 3. Понятие ортогональной системы функций.
- 4. Ряд Фурье.

- 5. Разложение непериодической функции в тригонометрический ряд Фурье на отрезке
- 6. Достаточные условия разложимости функции в ряд Фурье.
- 7. Интеграл Фурье.
- 8. Косинус-преобразование Фурье.
- 9. Синус-преобразование Фурье.
- 10. Комплексная форма интеграла Фурье.
- 11. Скалярное поле и его характеристика.
- 12. Скалярное поле в цилиндрических и сферических координатах.
- 13. Векторное поле. Дивергенция векторного поля.
- 14. Ротор векторного поля. .
- 15. Интегральные теоремы Стокса и Остроградского-Гаусса.
- 16. Основные понятия уравнений математической физики.
- 17. Основные примеры уравнений математической физики.
- 18. Корректно поставленная задача.
- 19. Приведение к каноническому виду уравнений второго порядка с частными производными.
- 20. Постановка краевых задач для линейного дифференциального уравнения второго порядка.
- 21. Вывод уравнения колебания струны.
- 22. Решение уравнения колебания бесконечной струны методом Даламбера (методом характеристик).
- 23. Решение Даламбера для закрепленной струны.
- 24. Решение уравнения колебаний струны методом Фурье.
- 25. Физический смысл решения уравнения струны.
- 26. Вынужденные колебания струны, закрепленной на концах.
- 27. Вывод уравнения линейной теплопроводности.
- 28. Распространение тепла в ограниченном стержне.
- 29. Распространение тепла в стержне, концы которого находятся при заданных переменных температурах.
- 30. Неоднородное уравнение теплопроводности.
- 31. Распространение тепла в бесконечном цилиндре.
- 32. Уравнение Лапласа. Уравнение Пуассона.
- 33. Задача о стационарном тепловом состоянии однородного тела.
- 34. Решение плоской задачи Дирихле.

8.Система оценивания планируемых результатов обучения Балльная структура оценки

No	Форма контроля	Минимальное	Максимальное
71⊻	Форма контроля		
		для аттестации	для аттеста-
		количество бал-	ции количе-
		ЛОВ	ство баллов
1	Посещение практических за-	4 (0,25)	4 (0,25)
	нятий		
2	Активная работа на занятии	0	4 (0,25)
3	Контрольная работа	6	10
4	Домашние задания	3	12
5	Индивидуальные задания	17	30
6	Зачет	20	40
7	Bcero	50	100

9. Учебно-методическое и информационное обеспечение дисциплины

9.1. Основная:

- 1. Байков В. Уравнение математической физики. Учебник и практикум / В. Байков, Р. Жибер. М.: Юрайт, 2017. 254 с.
- 2. Высшая математика в упражнениях и задачах / П.Е. Данко, А.Г. Попов. Г.Я. Кожевников. М.: Оникс: Мир-Образование, 2008. 816 с.
- 3. Кузнецов Л.А. Сборник задач по высшей математике. Типовые расчеты / Л.А. Кузнецов. СПб: Лань, 2008. 240 с.
- 4. Чудесенко В.Ф. Сборник заданий по специальным курсам высшей математики: типовые расчеты. СПб: Лань, 2016. 191 с.
- 5. Дополнительные главы математического анализа. Уравнения математической физики [Электронный ресурс]: учебное пособие / Л. А. Баданина, Н. В. Сванидзе, А. Л. Трескунов, Г. В. Якунина. Электрон.текстовые данные. СПб.: Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2017. 189 с. 978-5-9227-0777-0. Режим доступа: http://www.iprbookshop.ru/80746.html
- 6. Преобразование Фурье. Дифференциальное и интегральное исчисление функций нескольких переменных. Теория поля [Электронный ресурс] : учебник / А. П. Господариков, М. А. Зацепин, Г. А. Колтон [и др.] ; под ред. А. П. Господариков. Электрон.текстовые данные. СПб. : Национальный минерально-сырьевой университет «Горный», 2015. 213 с. 978-5-94211-713-9. Режим доступа: http://www.iprbookshop.ru/71690.html
- 7. Математика. Часть 8. Теория поля [Электронный ресурс] : учебное пособие / О. А. Кеда, Л. П. Мохрачева, Е. М. Пампура [и др.]. Электрон.текстовые данные. Екатеринбург : Уральский федеральный университет, ЭБС АСВ, 2014. 112 с. 978-5-7996-1159-0. Режим доступа: http://www.iprbookshop.ru/68439.html

9.2. Дополнительная:

- 1. Абдрахманов, В.Г. Уравнения математической физики. Теория и практика [Электронный ресурс] : учеб.пособие / В.Г. Абдрахманов, Г.Т. Булгакова. Электрон.дан. Москва : ФЛИНТА, 2014. 338 с. Режим доступа: https://e.lanbook.com/book/51962.
- 2. Бицадзе А.В. Сборник задач по уравнениям математической физики/ А.В. Бицадзе, Д.Ф. Калиниченко. М.: Наука, 1977. 310 с.
- 3. Будак Б.М. Сборник задач по математической физике / Б.М. Будак, А.А. Самарский, А.Н. Тихонов. М.: Физматлит, 2003. 687 с.
- 5. Деревич, И.В. Практикум по уравнениям математической физики [Электронный ресурс]: учеб.пособие Электрон. дан. Санкт-Петербург: Лань, 2017. 428 с. Режим доступа: https://e.lanbook.com/book/95131.
- 6. Емельянов, В.М. Уравнения математической физики. Практикум по решению задач [Электронный ресурс] : учеб.пособие / В.М. Емельянов, Е.А. Рыбакина. Электрон.дан. Санкт-Петербург : Лань, 2016. 216 с. Режим доступа: https://e.lanbook.com/book/71748.
- 7. Ильин, А.М. Уравнения математической физики [Электронный ресурс] : учеб.пособие Электрон. дан. Москва :Физматлит, 2009. 192 с. Режим доступа: https://e.lanbook.com/book/2181.
- 8. Кошляков Н.С. Уравнения в частных производных математической физики / Н.С. Кошляков, Э.Б. Глинер, М.М. Смирнов. М.: Высшая школа, 1970. 710 с.
- 9. Крупин В.Г., Высшая математика. Уравнения математической физики. Сборник задач с решениями [Электронный ресурс]: учеб.пособие / Крупин В.Г., Павлов А.Л., Попов Л.Г.. Электрон. дан. Москва: Издательский дом МЭИ, 2011. 352 с. Режим доступа: https://e.lanbook.com/book/72217. 10. Очан Ю.С. Методы математической физики / Ю.С. Очан. М.: Высшая школа, 1965. 380 с.
- 11. Семенистый В.И. Задачник-практикум по математической теории поля / В.И. Семенистый, В.В. Цукерман. М.: Просвещение, 1976. 136 с.
- 12. Соболева, Е.С. Задачи и упражнения по уравнениям математической физики [Электронный ресурс]: учеб.пособие / Е.С. Соболева, Г.М. Фатеева. Электрон.дан. Москва: Физматлит, 2012. 96 с. Режим доступа: https://e.lanbook.com/book/5295.

9.4. Программное обеспечение

- Программный комплекс «Электронные журналы», используемый для учета и анализа успеваемости обучающихся
 - Microsoft VisualFoxPro Professional 9/0 Win32 Single Academic OPEN (бессрочная), (лицензия 49512935);
 - Microsoft Win Home Basic 7 Russian Academic OPEN (бессрочная), (лицензия 61031351),
 - Microsoft Office 2010 Russian Academic OPEN, (бессрочная) (лицензия 61031351),
 - Microsoft Internet Security&Accel Server Standart Ed 2006 English Academic OPEN, (бессрочная), (лицензия 41684549),
 - Microsoft Windows Professional 7 Russian Upgrade Academic OPEN, (бессрочная), (лицензия 60939880),
 - Microsoft Office Professional Plus 2010 Russian Academic OPEN, (бессрочная), (лицензия 60939880),
 - Kaspersky Endpoint Security длябизнеса Расширенный Russian Edition. 1000-1499
 Node 2 year Educational Renewal License (лицензия 2022-190513-020932-503-526),
 срокпользованияс 2019-05-13 по 2021-04-13
 - ABBYYFineReader 11 Professional Edition, (бессрочная), (лицензия AF11-2S1P01-102/AD),
 - Microsoft Volume Licensing Service, (бессрочная), (лицензия 62824441),

9.5. Профессиональные базы данных и информационные справочные системы современных информационных технологий:

- «Антиплагиат. ВУЗ». Лицензионный договор №194 от 22.03. 2018 года;
- Официальный Web-сайт CaxГУ http://sakhgu.ru/; caxгу.рф
- Система независимого компьютерного тестирования в сфере образования http://i-exam.ru/
- Сайт научной электронной библиотеки eLIBRARY http://elibrary.ru
- Сайт университетской библиотеки ONLINE http://www.biblioclub.ru/
- Сайт электронно-библиотечной системы IPRbookshttp://www.iprbookshop.ru
- •Сайт информационной справочной системы Polpred.com http://polpred.com/
- Allmath.ru/highermath.htm

10. Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидов

Учебные и учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для слепых и слабовидящих:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
 - письменные задания оформляются увеличенным шрифтом;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

Для глухих и слабослышащих:

- лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования;
 - письменные задания выполняются на компьютере в письменной форме;
- экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.

Для лиц с нарушениями опорно-двигательного аппарата:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для слепых и слабовидящих:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.

Для глухих и слабослышащих:

- в печатной форме;
- в форме электронного документа.

Для обучающихся с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

Для слепых и слабовидящих:

- автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих;
 - акустический усилитель и колонки;

Для обучающихся с нарушениями опорно-двигательного аппарата:

- передвижными, регулируемыми эргономическими партами СИ-1;
- компьютерной техникой со специальным программным обеспечением.

11. Материально-техническое обеспечение дисциплины

- 1. Учебники и учебные пособия, имеющиеся в фондах библиотеки;
- 2. Доступ к Интернет-ресурсам;
- 3. Электронные и Интернет-учебники.

Материально-техническое обеспечение включает в себя специально оборудованные кабинеты и аудитории: компьютерные классы, аудитории, оборудованные мультимедийными средствами обучения.

Использование электронных учебников в процессе обучения должно обеспечиваться наличием во время самостоятельной подготовки рабочего места для каждого обучающегося в компьютерном классе, имеющего выход в Интернет, в соответствии с объемом изучаемой дисциплины.

УТВЕРЖДЕНО

Протокол заседания кафедрь № от		
51201		
	ЛИСТ ИЗМЕН	ЕНИЙ
		ематической физики»по направлению двумя профилями подготовки), профиль
	на 20/20 уче	бный год
1. В (элемент рабочей программы	bl)	зменения:
1.1 1.2		
1.9		
2. В	·····;	зменения:
2.9.	,	
3. В	51) ;	зменения:
3.9		
Составитель дата	подпись	расшифровка подписи
Зав. кафедрой	подпись	расшифровка подписи