Аннотация рабочей программы дисциплины «Теплотехника»

Цели и задачи освоения дисциплины

Цель дисциплины — сформировать у студентов устойчивые представления о практическом применении теоретических, технических и технологических основ термодинамики и теплотехники, дать действенный аппарат для подготовки, принятия и реализации энергоэффективных проектов.

В процессе изучения дисциплины студенты должны понять и усвоить процессы преобразования, передачи и использования теплоты в такой степени, чтобы они могли выбирать и эксплуатировать необходимое теплотехническое оборудование с максимальной эффективностью, экономя топливно-энергетические ресурсы, выявлять и использовать вторичные энергоресурсы, защищать окружающую среду.

Задачи дисциплины:

- —изучение основ преобразования энергии, законов термодинамики и теплопередачи, термодинамических процессов и циклов, свойств существенных для отрасли рабочих тел, способов теплообмена, принципа действия и устройства теплообменных аппаратов, теплосиловых установок и других теплотехнических устройств, применяемых в отрасли;
- -формирование умения рассчитывать состояния рабочих тел, термодинамические процессы и циклы, теплообменные процессы, аппараты и другие основные технические устройства отрасли;
- -формирование навыков расчета и анализа эффективности термодинамических процессов нефтегазового производства, навыков расчёта процессов конвективного тепло- и массопереноса, передачи тепла излучением и молекулярной теплопроводностью, выбора тепловой защиты и организации систем охлаждения, проведения теплотехнических измерений.

Формируемые компетенции и индикаторы их достижения по дисциплине (модулю)

Код и наименова-	Планируемые результаты осво-	Код и наименование индикато-
ние компетенции	ения дисциплины	ра достижения компетенции
ОПК-3. Способен в	Знать: методы сбора информа-	ОПК-3.1. Демонстрирует знание
сфере своей про-	ции, экспериментальным путем,	методов и средств эксперимен-
фессиональной де-	для разработки модели в трех-	тальных исследований в сфере
ятельности прово-	мерном пространстве.	профессиональной деятельности.
дить измерения и	Уметь: собирать данные экспе-	ОПК-3.2. Обоснованно подбира-
наблюдения, обра-	риментальным путем и выделять	ет средства и методы измерения
батывать и пред-	необходимое, для построения мо-	различных параметров в профес-
ставлять экспери-	дели в трехмерном пространстве.	сиональной деятельности.
ментальные дан-	Владеть: навыками построения	ОПК-3.3. Выбирает современные
ные и результаты	моделей и механизмов в трех-	методы и средства эксперимен-
испытаний.	мерном пространстве.	тальных исследований в профес-
		сиональной деятельности.

Содержание разделов дисциплины

Раздел 1.Термодинамика

Тема 1. Основные понятия и законы феноменологической термодинамики:

Предмет, метод исследования и область применения феноменологической термодинамики. Термодинамическая система. Параметры и уравнения состояния. Идеальный и реальный газы. Смеси идеальных газов. Теплоемкость газов и их смесей. Дифференциальные уравнения термодинамики. Термодинамические потенциалы. Основные законы термодинамики.

Тема 2. Термодинамические процессы:

Термодинамические процессы с идеальным газом. Термодинамические процессы с водяным паром. Влажный воздух.

Тема 3. Рабочий процесс в турбине и компрессоре:

Идеальная газовая турбина и идеальный компрессор. Многоступенчатые компрессоры. Работа и коэффициент полезного действия реальных компрессоров. Принципиальная схема газотурбинной установки и процессы в ней.

Тема 4. Термодинамика газовых потоков:

Сопловое и диффузорное течение. Закон обращения воздействий на поток. Форма каналов сопел и диффузоров. Истечение газа через суживающееся сопло и сопло Лаваля. Скачки уплотнения.

Тема 5. Циклы теплоэнергетических установок:

Прямые и обратные круговые процессы (циклы). Циклы теплосиловых установок, холодильных машин и тепловых насосов. Цикл Карно, теорема Карно. Обобщенные и эквивалентные циклы Карно. Циклы поршневых двигателей внутреннего сгорания. Циклы газотурбинных двигателей. Циклы пароэнергетических установок. Обратные циклы.

Тема 6. Термодинамический анализ теплотехнических устройств:

Второе начало термодинамики для необратимых процессов. Закон возрастания энтропии. Необратимость и производство работы. Эксергия. Анализ необратимых циклов с помощью системы коэффициентов полезного действия. Энтропийный и эксергетический методы анализа. Тепловой и эксергетический балансы теплоэнергетических установок. Вторичные энергетические ресурсы.

Раздел 2. Теория теплообмена

Тема 1. Теория теплопроводности:

Процессы теплообмена. Основные понятия теории теплопроводности. Теплопроводность материалов. Дифференциальное уравнение теплопроводности. Условия однозначности. Распространение теплоты теплопроводностью в плоской и цилиндрической стенках при стационарном режиме (граничные условия первого рода).

Тема 2. Конвективный теплообмен

Основные понятия и определения. Дифференциальные уравнения конвективного теплообмена. Подобие физических явлений. Гидромеханическое подобие. Тепловое подобие. Уравнения подобия конвективного теплообмена. Экспериментальное изучение конвективного теплообмена.

Тема 3. Теплообмен при вынужденном и свободном движении теплоносителей:

Вынужденное движение жидкости в трубах. Теплоотдача при вынужденном движении жидкости в трубах. Особенности расчета коэффициента теплоотдачи при поперечном омывании пучка оребренных труб. Теплоотдача при свободном движении. Теплообмен при кипении жидкости. Теплоотдача при конденсации пара.

Тема 4. Тепловое излучение:

Общие сведения. Закон поглощения. Основные законы излучения. Серые тела. Закон Кирхгофа. Излучение газов. Теплообмен излучением между двумя телами. Защита от теплового излучения с помощью экранов.

Тема 5. Теплопередача:

Сложный теплообмен. Теплопередача через стенки. Тепловая изоляция. Критический диаметр изоляции.

Тема 6. Типы теплообменных аппаратов:

Схемы тока теплоносителей. Тепловой баланс теплообменного аппарата. Температурный напор. Тепловые расчеты теплообменных аппаратов. Гидродинамический расчет теплообменных аппаратов. Тепловые трубы и термосифоны.