Министерство образования и науки РФ Охинский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «САХАЛИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Согласовано Работодатель Бру. Сауприенно 5. В 18 година при в УТВЕРЖДАЮ:

О Директор ОФ Сах ГУ

О.А.Гаврош

« " " 201

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП. 11 Гидравлика

21.02.01 Разработка и эксплуатация нефтяных и газовых месторождений (базовый уровень среднего профессионального образования)

Квалификация: техник-технолог

201/г

Рабочая программа учебной дисциплины Гидравлика разработана на основе Федерального государственного образовательного стандарта по специальности 21.02.01 Разработка нефтяных и газовых месторождений, утверждённого Приказом Министерства образования и науки РФ 12 мая 2014 г. № 482, и примерной программы Гидравлика, входящей в состав укрупненной группы специальностей 130000 Геология и разведка полезных ископаемых и рекомендованной Экспертным советом по профессиональному образованию ФГУ ФИРО

Организация-разработчик: Охинский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Сахалинский государственный университет»

		(Ф. И	. О., ученая степен	нь, звание, дол	жность)		
city and participation					mg=a1j (0,20,)		
(REASION	agice o test	(Ф. И.	. О., ученая степен	нь, звание, дол	жность)		
	, 40000	(Ф. И.	. О., ученая степен	нь, звание, дол	жность)		- 1
Рассмот	рена и рен	сомендовал	на на заседан	ии ПЦК О	ПД и ПМ ОФ	СахГУ	
ротокол №	1		4.09		201_4 г.		

201 4

Протокол №

Содержание

	стр
1. Паспорт рабочей программы учебной дисциплины	4
2.Структура и содержание учебной дисциплины	5
3. Условия реализации учебной дисциплины	8
4.Контроль и оценка результатов освоения учебной дисципли	іны 8

1. Паспорт рабочей программы учебной дисциплины Гидравлика

1.1 Область применения рабочей программы

Рабочая программа учебной дисциплины является частью программы подготовки специалистов среднего звена специальности 21.02.01 Разработка и эксплуатация нефтяных и газовых месторождений с квалификационной базовой подготовкой- техник.

Рабочая программа учебной дисциплины может быть использована в дополнительном профессиональном образовании (в программах повышения квалификации и переподготовки): Оператор по добыче нефти и газа, Оператор товарный, Оператор технологических установок.

- 1.2 Место учебной дисциплины в структуре ППССЗ: дисциплина вариативной части общепрофессиональных дисциплин профессионального цикла.
- Изучение дисциплины направлено на формирование следующих общих компетенций:
- ОК 1 Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес
- ОК 2 Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество
- ОК 3 Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность
- OК 4 Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития
- ОК 5 Использовать информационно-коммуникационные технологии в профессиональной деятельности
- ОК 6 Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями
- OK 7 Брать на себя ответственность за работу членов команды, за результат выполнения заданий
- OK 8 Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации
- ОК 9 Ориентироваться в условиях частой смены технологий в профессиональной деятельности
- ПК 2.1 Выполнять основные технологические расчёты по выбору наземного и подземного скважинного оборудования
 - ПК 2.2 Производить техническое обслуживание нефтегазопромыслового оборудования
- ПК 2.3 Осуществлять контроль за работой наземного и скважинного оборудования на стадии эксплуатации
- 1.3 Цели и задачи учебной дисциплины—требования к результатам освоения дисциплины:

Уметь:

- применять законы, понятия гидравлики при решении практических задач и объяснять процессы, основанные на этих законах
- определять плотность, вязкость, давление и силы давления жидкости; выполнять гидравлические расчёты трубопроводов, расчёты истечения жидкости из отверстий и насадок, расчёты фильтрации жидкости, пользуясь справочной литературой и вычислительной техникой.

Знать:

- понятия, определения, законы гидравлики. Основные физические свойства жидкости; законы статики и динамики жидкости; сопротивления, возникающие при движении жидкости и затраты энергии на их преодоление; законы движения жидкости в пористой среде, законы движения неньютоновской жидкости.
 - 1.4Количествочасовнаосвоениерабочейпрограммыучебной дисциплины: максимальной учебной нагрузки студента 120 часов, в том числе: обязательной аудиторной учебной нагрузки студента 80 часов; самостоятельной работы студента 40 часов.

2 Структура и содержание учебной дисциплины

2.10бъем учебной дисциплины и виды учебной работы

Вид учебной работы	Кол-во часов
Максимальная учебная нагрузка (всего)	120
Обязательная аудиторная учебная нагрузка (всего)	80
в том числе:	
практические занятия	34
Самостоятельная работа обучающегося (всего)	40
Итоговая аттестация в форме дифференцированного зачета	

$2.2\ Coombemcmbu$ е компетенций и составных частей $P\Pi$

Содержание учебного материала		Компетенции										
		Общие компетенции							Профессиональные компетенции			
	OK1	ОК2	ОК3	ОК4	OK5	ОК6	ОК7	ОК8	ОК9	ПК2.1	ПК2.2	ПК2.3
Раздел 1 Основные физические свойства жидкостей												
Тема 1.1 Основные физические свойства жидкостей	+	+	+	+	+					+	+	
Раздел 2 Гидростатика												
Тема 2.1 Давление и законы гидростатики		+	+	+	+	+	+	+	+		+	
Раздел 3 Гидродинамика												
Тема 3.1Основы гидродинамики и управления		+	+	+	+					+		
движения жидкости												
Тема 3.2 Гидравлические сопротивления	+	+	+	+				+	+	+	+	+
Тема 3.3 Движение жидкости в трубопроводах		+		+	+						+	+
Тема 3.4 Истечение жидкости из отверстий и насадок			+	+	+	+	+			+		
Тема 3.5 Движение жидкости в пористой среде					+	+	+				+	+
Тема 3.6 Неньютоновские жидкости		+	+	+				+	+	+		
Тема 3.7 Сведения о дисперсных системах		+			+	+			+	+	+	+

2.3Тематический план и содержание учебной дисциплины Гидравлика

Наименование разделов и тем	Содержание учебного материала, лабораторные и практические работы, самостоятельная работа студентов	Объем часов	Уровень освоения
Введение	Роль гидравлики в нефтегазовом деле		
	Раздел 1Основные физические свойства жидкостей	6	
Тема 1.1	Содержание учебного материала	4	
Основные	понятие жидкости. Жидкость капельная, газообразная, идеальная, реальная. Основные физические	2	2.
физические	свойства: плотность, сжимаемость, температурное расширение, поверхностное натяжение.	2	2
свойства	2 Вязкость жидкости: закон внутреннего трения, вязкость абсолютная, их физический смысл, единицы измерения. Приборы для измерения вязкости	2	2
жидкостей	Практическая работа:	2	
	1 Решение задач на определение плотности и вязкости жидкости	2	
	Раздел 2 Гидростатика	20	
Тема 2.1	Содержание учебного материала	6	
Давление и законы	1 Гидростатическое давление; понятие, единицы измерения, свойства, способы учёта. Основное уравнение гидростатики. Поверхности равного давления	2	2
гидростатики	2 Приборы для определения гидростатического давления. Закон Паскаля и его применение. Эпюры гидростатического давления. Давление жидкости на плоские стенки.	2	2
	3 Горизонтальные и вертикальные составляющие силы давления. Равновесие тела в покоящейся жидкости. Закон Архимеда. Равновесие тела, часть которого погружена в жидкость	2	2
	Практическая работа	10	
	1 Определение силы давления на плоские горизонтальные стенки	2	
	2 Определение силы давления на криволинейные стенки	2	
	3 Построение эпюр давления на плоскую стенку	2	
	4 Решение задач на закон Архимеда	4	
	Самостоятельная работа при изучении темы 2.1	4	
	Определение сил давления на плоские и криволинейные стенки по индивидуальным заданиям	4	
	Раздел 3 Гидродинамика	92	
	Содержание учебного материала	6	
Тема 3.1	1 Основные понятия и определения гидродинамики. Расход жидкости. Уравнение расхода.	2	2
Основы	2 Уравнение Бернулли. Энергетический и геометрический смысл уравнения Бернулли.	2	2
гидродинамики и	3 Приборы для измерения скорости и расхода жидкости. Общие понятия о гидравлических машинах, принцип их действия, область применения	2	2
уравнения	Практическая работа	8	
движения	1 Решение задач и использованием уравнения Бернулли	4	
жидкости	2 Расчёт насоса и насосной установки	4	
	Самостоятельная работа при изучении темы 3.1	6	
	Использование основных уравнений гидродинамики для решения практических задач		
	Задачи с применением уравнения Бернулли. Задачи с применением уравнения неразрывности струи жидкости. Задачи с использованием уравнения Вентури		
Тема 3.2	Содержание учебного материала	6	
Гидравлические	1 Режимы движения жидкости. Потери напора при равномерном движении. Формула Дарси-Вейсбаха	2	2
сопротивления	2 Коэффициент гидравлических сопротивлений и его определение при ламинарном и турбулентном движении жидкости.	2	2
•	3 Местные сопротивления. Потери напора в местном сопротивлении. Коэффициент местного сопротивления. Сопротивление при обтекании тел	2	2
	Практическая работа	10	

	1 Определение потеть напора по длине при ламинарном движении жидкости в трубах	2				
	2 Определение потерь напора по длине при турбулентном движении жидкости в трубах	2				
	3 Определение общего потерянного напора в трубах	2 2				
	4 Определение режимов движения жидкости					
	5 Определение коэффициентов гидравлических сопротивлений при различных режимах движения жидкости и зонах шероховатости трубопроводов	2				
	Самостоятельная работа					
	Определение числа Рейнольдса. Определение потерь напора в зависимости от режима движения жидкости					
	Определение скорости восходящего потока жидкости. Определение потеть напора в местном сопротивлении	8				
	Сопротивление при обтекании тел					
	Содержание учебного материала	10				
	1 Назначение, классификация трубопроводов. Основные задачи при гидравлическом расчёте трубопровода. Формулы для расчёта простого трубопровода	2	2			
	2 Общие понятия о сложных трубопроводах с последовательным и параллельным соединением. Гидравлические характеристики трубопроводов	2	1			
	3 Гидравлический удар в трубопроводах. Причины гидравлического удара. Полезное использование гидравлического удара. Кавитация	2	2			
T 2.2	4 Сифонные трубопроводы, их применение и расчёт. Условия работы сифонных трубопроводов	2	2			
Тема 3.3	5 Определение напора и мощности насоса. Проверка условий всасывания насоса	2	2			
Движение	Практическая работа	4				
жидкости в	1 Определение потери напора и мощности насоса					
трубопроводах	 Проверка условий всасывания насоса 	2				
	Самостоятельная работа					
	Расчёт простого трубопровода. Расчёт напорного трубопровода. Определение фазы удара и скорости распространения ударной волны. Расчёт	10				
	сифонного трубопровода					
	Содержание учебного материала	4				
Тема 3.4	1 Истечение жидкости из отверстий в стенке при постоянном напоре. Формула Торричелли. Теоретический и действительный расход при	2	2			
Истечение	истечении. Истечение под уровень	2				
жидкости из	2 Истечение при переменном напоре: определение времени наполнения или опоражнивания ёмкостей					
отверстий и	Самостоятельная работа					
насадок	Истечение жидкости из насадок и отверстий. Расчеты.					
	Содержание учебного материала	4				
	1 Фильтрация жидкости. Основные понятия. Теория фильтрации. Вклад отечественных учёных в развитие теории фильтрации. Закон Дарси	2	2			
Тема 3.5	2 Скорость и расход при фильтрации. Простейший случай фильтрации	2	2			
Движение	Самостоятельная работа					
жидкости в	Определение коэффициента проницаемости горных пород					
пористой среде	Определение дебита скважин					
Тема 3.6	Содержание учебного материала	2				
Неньютоновские	понятия и классификация неньютоновских жидкостей Вязкопластичные жидкости, их свойства. Движение вязкопластичных жидкостей по	_	2			
жидкости	трубам. Режимы движения вязкопластичных жидкостей. Определение потерь напора и расхода.	2	2			
• •	Самостоятельная работа					
	Условия движения вязкопластичныхнефтей. Определение потерь напора и расхода	2				
	Содержание учебного материала	2				
Тема 3.7 Сведения	1 Дисперсная фаза и дисперсная среда. Классификация дисперсных систем. Устойчивость дисперсных систем.	2	2			
о дисперсных	Самостоятельная работа					
системах	Определение разности давлений при движении вязко-пластичных жидкостей					
	Итого:	120				
	NIM020;	120				

3Условияреализацииучебной дисциплины

3.1Требованиякминимальномуматериально-техническомуобеспечению.

Для реализации учебной дисциплины имеется в наличии учебный кабинет Гидравлика.

- Оборудование учебного кабинета:
- посадочные места по количеству студентов;
- рабочее место преподавателя;
- комплект учебно-наглядных пособий Гидравлика;
- таблицы единиц измерения основных физических параметров жидкостей;
- плакаты с формулами основных законов гидравлики (Паскаля, Архимеда, Вентури и т.д.);
- таблицы перевода единиц из одной системы измерения в другую

Технические средства обучения:

• -компьютер с лицензионным программным обеспечением и мультимедиа проектор.

3.2 Информационное обеспечение обучения

- 1. Брюханов О.С. Основы гидравлики и теплотехники/О.С.Брюханов –М: Инфа-М, 2009
- 2. Кошевникова Н.Г., Тогунова Н.П., Ещин А.В. Практикум по гидравлике. Учебное пособие для ССУЗов/Н.Г. Кошевникова, Н.П Тогунова., А.В.Ещин М.: Инфа-М, 2014
- 3. Ухин Б.В., Гусев А.А., Гидравлика/ Б.В Ухин., А.А. Гусев М: Инфра-М, 2010

4 Контроль и оценка результатов освоения учебной дисциплины

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а так же выполнения студентами индивидуальных заданий, проектов, исследований.

	ОК,ПК	
Результаты обучения (освоенные		Формы и методы контроля
Уметь: -применять законы, понятия гидравлики при решении практических задач и объяснять процессы, основанные на этих законах	ОК1 - ОК9 ПК 2.1 - 2.3	Устные и письменные опросы в течение обучения, практические работы, внеаудиторная самостоятельная работа
-определять плотность, вязкость, давление и силы давления жидкости на плоские и криволинейные стенки сосудов.	ОК1 - ОК9 ПК2.1 – 2.3	Устные и письменные опросы в течение обучения, лабораторные работы, практические работы
-выполнять гидравлические расчёты трубопроводов, расчёты истечения жидкости из отверстий и насадков, расчёты фильтрации жидкости	ОК1 – ОК9 ПК 2.1 – 2.2	Устные и письменные опросы в течение обучения, практические работы, решение задач по индивидуальным карточкам, самостоятельное конспектирование некоторых тем программы
Знать: - понятия, определения, законы гидравлики. Основные физические свойства жидкости Методику и последовательность расчётов - сопротивления, возникающие при движении жидкости	ОК1 – ОК9 ПК2.1 – 2.3	Устные и письменные опросы в течение обучения, практические работы, решение задач по индивидуальным карточкам