Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Сахалинский государственный университет» Кафедра электроэнергетики и физики

РАБОЧАЯ ПРОГРАММА

Дисциплины

Б1.В.ДВ.05.02 Занимательная астрономия Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки 44.03.05 ПЕДАГОГИЧЕСКОЕ ОБРАЗОВАНИЕ (с двумя профилями подготовки)

Профиль подготовки МАТЕМАТИКА И ФИЗИКА

Квалификация **БАКАЛАВР**

Форма обучения очная

РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

Южно-Сахалинск 2020 г.

Рабочая программа дисциплины «Занимательная астрономия» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки).

Программу составил(и):

Куцов А. М., кандидат ф-м.н., доцент кафедры электроэнергетики и физики

AT

Рабочая программа дисциплины «Занимательная астрономия» утверждена на заседании кафедры электроэнергетики и физики протокол № 11 «09 июня» 2020 г.

Зав. кафедрой электроэнергетики и физики

__/ В. П. Максимов

Рецензент(ы): Тамонов Л. Г.,

заместитель директора Департамента образования

Администрации г. Южно-Сахалинска

(Ф.И.О., должность, место работы)

1 Цели и задачи дисциплины

Целью изучения дисциплины «Занимательная астрономия» является формирование профессиональных компетенций у студентов, направленных на формирование методических приемов, направленных на повышение интереса учащихся к изучению астрономии посредством включения в обучение занимательных вопросов астрономии.

Задачи изучения дисциплины:

- усвоение понятий, теорий и законов, лежащих в основе современной астрономии;
 - научное объяснение наблюдаемых в природе астрономических явлений;
 - формирование научного представления о строении и эволюции Вселенной;
- знакомство с основными результатами современной астрономической науки;
 - знакомство с методами современной астрономии;
- ознакомление студентов с вопросами содержания и организации внеклассной работы по астрономии, значительно обогащающей предметные знания школьников.

2 Место дисциплины в структуре образовательной программы

Дисциплина «Занимательная астрономия» относится к относится к части, формируемой участниками образовательных отношений (Б1.В.ДВ.05.02).

Пререквизиты дисциплины: Мировоззренческий (социально-гуманитарный) модуль, Коммуникативный модуль, Предметно-содержательный модуль (общая физика, астрономия, алгебра, геометрия, математический анализ), научно-исследовательская работа (получение первичных навыков научно-исследовательской работы) по математике и физике.

Постреквизиты дисциплины: методика обучения физике, педагогическая практика.

3 Формируемые компетенции и индикаторы их достижения по дисциплине

Коды компетенции	Содержание компетенций	Код и наименование индикатора достижения компетенции
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.1. Знать: методы критического анализа и оценки современных научных достижений; основные принципы критического анализа. УК-1.2. Уметь: получать новые знания на основе анализа, синтеза и других методов; собирать данные по сложным научным проблемам, относящимся к профессиональной области; осуществлять поиск информации и решений на основе экспериментальных действий. УК-1.3. Владеть: исследованием проблем профессиональной деятельности с применением анализа, синтеза и других методов интеллектуальной деятельности; выявлением научных проблем и использованием адекватных методов

		для их решения; демонстрированием оценочных суждений в решении проблемных профессиональных ситуаций.
ПКС-9	Способен устанавливать содержательные, методологические и мировоззренческие связи предметной области (в соответствии с профилем и уровнем обучения) со смежными научными областями	методологические и мировоззренческие связи предметной области со смежными научными областями ПКС-9.2. Уметь: устанавливать

4 Структура и содержание дисциплины «Занимательная астрономия»

4.1. Структура дисциплины

Общая трудоемкость дисциплины 2 зачетные единицы (72 академических часа).

	Трудоемкость,		
Pur poforu	акад. Часов		
Вид работы	9		
	семестр		
Общая трудоемкость	2 (72)		
Контактная работа:	28		
Лекции (Лек)	14		
Практические занятия (ПР)	14		
Контактная работа в период	4		
теоретического обучения (КонтТО)			
Промежуточная аттестация (зачет)			
Самостоятельная работа:	40		
самоподготовка (проработка и			
повторение материала учебников и	16		
учебных пособий)			
подготовка к практическим занятиям	24		

4.2. Примерный тематический план и содержание учебной дисциплины «Занимательная астрономия» для студентов очной формы обучения

№п/п	Раздел дисциплины		Виды	У	чебной	Формы	текущего
		СТ	Б работы (в		cax)	контроля	успеваемости,
		Me	ЛЗ	П3	CPC	промежуто	очной
		Ce				аттестации	[

1.	Основы сферической астрономии	IX	4	4	12	Устный опрос Тестирование Сообщение по теме занятия Решение ситуационных задач
2.	Основы небесной механики		4	4	12	Устный опрос Тестирование Сообщение по теме занятия Решение ситуационных задач
3.	Основы астрофизики Методы астрофизических исследований Элементы космогонии и космологии	IX	6	6	16	Устный опрос Тестирование Сообщение по теме занятия Решение ситуационных задач
	Контактная работа в период теоретического обучения Контактная работа в период промежуточной аттестации	IX				4 зачет
		IX	14	14	40	2 3.e.

4.3. Содержание разделов дисциплины

Раздел 1. Основы сферической астрономии

Основы сферической астрономии, исходя из видимого расположения и движения светил на небесной сфере, для наблюдателя, находящегося на поверхности Земли. Решение задач о выборе целесообразных систем сферических координат, систем счета времени, рассмотрение явлений суточного вращения небесной сферы, разработка способов исправления значений координат от искажающих влияний: изменений самих координатных систем со временем, суточного вращения Земли и ее годичного обращения вокруг Солнца, земной атмосферы.

Раздел 2. Основы небесной механики

Требования ФГОС СОО к предметным результатам освоения углубленного курса математики. Основные содержательные линии школьного курса математики (алгебра). Содержание числовой линии в школьном курсе математики (углубленный уровень). Методика изучения комплексных чисел. Методика изучения уравнений с параметрами. Методика изучения неравенств с параметром. Методика изучения систем уравнений с параметрами. Изучение графических методов решения уравнений и неравенств. Методика решения задач ЕГЭ типа С. Олимпиадные задачи по алгебре.

Раздел 3. Основы астрофизики Методы астрофизических исследований. Элементы космогонии и космологии

Требования ФГОС СОО к предметным результатам освоения углубленного курса математики. Основные содержательные линии школьного курса математики (начала математического анализа).

4.4. Темы и планы лекционных и практических занятий Лекции 1-2

Введение. Системы сферических координат и шкалы времени. Элементы

сферической тригонометрии. Понятие о сферической геометрии и тригонометрии. Свойства сферических треугольников. Основные формулы сферических треугольников. Формулы для прямоугольных сферических треугольников. Малые и узкие сферические треугольники. Системы сферических координат. Понятие о сферических координатах. Основные круги и точки на небесной сфере. Горизонтальная система координат. Экваториальные системы координат. Эклиптическая система координат. Географическая система координат. Изменяемость географических долгот и широт. Связь небесных координат с географическими. Связи между небесными системами координат.

Практические занятия 1-2

- 1. Измерение времени
- 2. Явления суточного вращения небесной сферы
- 3. Прецессия и нутация
- 4. Аберрация
- 5. Параллакс
- 6. Астрономическая рефракция
- 7. Редукции координат светил.

Лекции 3-4

Системы астрономо-геодезических постоянных 1896, 1964, 1976/80 гг. Системы геодезических параметров Земли. Теоретические связи между постоянными. Понятие системы координат и реализации системы координат в форме координатной основы. Небесные и земные системы координат и их реализация. Измерение времени: шкала атомного времени IAT. Классические шкалы времени UTO, UT1, UT2, ET. Релятивистские шкалы времени TDT и TDB, TT, TCG, TCB. Хранение и воспроизведение шкал времени и эталонных частот. Методы их распространения и синхронизации. Небесная опорная координат (ICRF) земная опорная система координат И Радиолокационные и радиоинтерферометрические методы наблюдений тел Солнечной системы. Методы согласования оптических и радиосистем координат. Явления прецессии, нутации, аберрации и рефракции. Изменения координат звезд под влиянием рефракции, параллакса, аберрации, нутации, прецессии и собственных движений звезд; редукционные вычисления; эфемеридная проблема в астрономии; методы определения основных астрометрических постоянных. Приведение на видимое место. Радиоинтерферометры со сверхдлинной базой (РСДБ), устройство, принцип измерений. Корреляционная обработка сигналов в РСДБ. Радиоастрономические методы определения координат объектов, неравномерности вращения Земли, движения полюсов и расстояний на поверхности Земли. Уравнения Эйлера, Пуассона, Лиувилля. Неравномерность вращения Земли вокруг оси. Движение полюсов. Инструменты для изучения вращения Земли: пассажный инструмент, зенит-телескоп, призменная астролябия, фотографическая зенитная труба, лазерный дальномер, глобальные навигационные спутниковые системы. Интерпретация движения полюсов И неравномерности вращения Земли. Короткопериодические, сезонные, вековые вариации вращения Земли. Чандлеровское движение полюса. Международная Служба Вращения Земли (IERS), ее организации и задачи. Стандарты MCB3 (IERS). Изучение прецессии и нутации оси вращения Земли методами РСДБ.

Практические занятия 3-4

- 1. Системы координат и времени. Средства хранения, воспроизведения шкал времени и эталонных частот
- 2. Наземная оптическая астрометрия. Космическая астрометрия. Методы абсолютных и относительных определений координат. Звездные каталоги и их систематические ошибки. Ориентировка системы координат. Относительные и сводные каталоги. Важнейшие фундаментальные каталоги
- 3. Вращение Земли и ее ориентация в пространстве Инструменты для изучения вращения Земли: пассажный инструмент, зенит-телескоп, призменная астролябия,

фотографическая зенитная труба, РСДБ, лазерный дальномер, глобальные навигационные спутниковые системы. Интерпретация движения полюсов и неравномерности вращения Земли: короткопериодические, сезонные, вековые вариации вращения Земли. Чандлеровское движение полюса.

- 4. Аналитические методы небесной механики. Уравнения движения п тел и их первые интегралы. Малые параметры в теории движения планет и спутников. Разложение пертурбационной функции. Малые знаменатели. Резонанс.
- 5. Качественные методы небесной механики. Орбитальная устойчивость. Устойчивость по Лагранжу. Устойчивость по Пуассону. Ограниченная задача трех тел. Семейства периодических решений вблизи точек либрации.
- 6. Движение спутников планет и искусственных спутников Земли. Возмущающие факторы в движении естественных спутников планет. Возмущающие факторы в движении искусственных спутников Земли.
- 7. Основы гравиметрии. Изучение формы земли и ее потенциала наземными и космическими методами наблюдений Гравитационный потенциал Земли, Луны, планет. Масконы. Методы определения параметров гравитационного поля и фигуры небесных тел.
- 8. Звездная динамика. Структура Галактики. Подсистемы Галактики. Модели Галактики и орбиты звезд

Лекшии 5-7

Основы теоретической астрофизики. Методы практической астрофизики. Краткие исторические сведения. Современные проблемы астрофизики.

Эволюция Вселенной. Начало Вселенной. Рождение галактик. Эры эволюции Вселенной. Адронная эра. Лептонная эра. Фотонная эра или эра излучения

Практические занятия 5-7

- 1. Пространственно-временные масштабы в астрофизике.
- 2. Излучение и поглощение электромагнитных волн в среде.
- 3. Особенности и физические ограничения астрономических наблюдений.
- 4. Межзвездная среда.
- 5. Звезды.
- 6. Обзор методов и инструментов астрофизических исследований. Объекты исследования.

4.1. Примерная тематика курсовых работ

(курсовые работы не предусмотрены)

5 Темы дисциплины (модуля) для самостоятельного изучения (не предусмотрены)

6 Образовательные технологии

№п/п	Наименование раздела		Виды учебных	Образовательные	
Паименование		ние раздела	занятий	технологии	
1.	Основы	сферической	Лекции	Лекции с использованием	
	астрономии			видеоматериалов	
			Практические	Решение ситуационных	
			занятия	задач, ТРКМ, практический	
				эксперимент	
			Самостоятельная	Консультирование и	
			работа	проверка домашних заданий	
2.	Основы	небесной	Лекции	Лекции с использованием	

	механики		видеоматериалов
		Практические	Решение ситуационных
		занятия	задач, ТРКМ, практический
			эксперимент
		Самостоятельная	Консультирование и
		работа	проверка домашних заданий
3.	Основы астрофизики	Лекции	Лекции с использованием
	Методы астрофизических		видеоматериалов
	исследований Элементы	Практические	Решение ситуационных
	космогонии и космологии	занятия	задач, ТРКМ, практический
			эксперимент
		Самостоятельная	Консультирование и
		работа	проверка домашних заданий

7 Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине

Задания для аудиторной и внеаудиторной самостоятельной работы студентов Раздел 1.

- 1. Почему через 2 точки на сфере, если они не являются диаметрально противоположными, можно провести только один БК.
 - 2. Что такое эйлеров сферический треугольник?
- 3. Пользуясь правилом круговой перестановки элементов, напишите полностью все 4 группы основных формул сферического треугольника ABC.
- 4. Используя словесные формулировки, воспроизведите все 4 группы основных формул для сферических треугольников PQR и KLM.
- 5. Вычислите расстояние между КАО ($\lambda=3^{\rm h}~16^{\rm m}~29^{\rm s}$.2, $\phi=55^{\circ}~47'$.4) и СКАС КФУ ($\lambda=2^{\rm h}~45^{\rm m}~46^{\rm s}$.0 , $\phi=430~39'$.2) в градусах и километрах. Землю считать шарообразной с $R=6371~{\rm km}$.
- 6. Вывести формулы для z светил в ВК и НК из геометрических соображений (сделайте рисунок НС в проекции на плоскости меридиана).
- 7. Выведите формулы из прямоугольного сферического треугольника CP_nZ (С должно находиться в первом вертикале).
 - 8. Сделать то же для С, находящейся в элонгации.
- 9. В какой области горизонта восходят и заходят светила со склонениями а) $\delta > 0^{\circ}$, б) $\delta = 0^{\circ}$, в) $\delta < 0^{\circ}$ на заданной широте ϕ .
- 10. Какова относительная продолжительность пребывания над горизонтом и под горизонтом у светил со склонениями: а) $\delta > 0^\circ$ б) $\delta = 0^\circ$, в) $\delta < 0^\circ$? Как она изменяется при изменении ϕ ?
- 11. Какие светила пересекают первый вертикал над горизонтом, на горизонте, под горизонтом, не пересекают вовсе? Как изменяются эти условия при изменении?
- 12. На каких широтах возможны наблюдения светила со склонением $\delta = 30^{\circ}$ в первом вертикале, в элонгации ?
 - 13. Где на Земле светила не бывают в первом вертикале или в элонгации?
- 14. Начиная с какой широты могут быть белые ночи: гражданские, астрономические?
- 15. Найти продолжительность периодов белых ночей, астрономических и гражданских на широтах 62°, 56°, 50°.
- 16. Найти продолжительность полярного дня и полярной ночи на широте $\phi = 75^\circ$ (с учетом рефракции $\rho = 35'$ и Ro = 16').

Разлел 2.

- 1. Влияние современных достижений астрометрии на развитие смежных разделов науки астрофизики и геофизики.
- 2. Теория меридианного круга и абсолютные методы определения координат звезд. Современные меридианные инструменты.
- 3. Построение инерциальной системы координат фундаментальная проблема астрометрии.
- 4. Системы фундаментальных астрономических постоянных. Значение и классификация астрономических постоянных
- 5. Метод радиоинтерферометрии со сверхдлинной базой основа для построения инерциальной системы координат.
 - 6. Оптические интерферометры и метод спекл-интерферометрии.
 - 7. Сравнение астрономического и атомного времени.
- 8. Обнаружение и исследование неравномерностей вращения Земли вокруг своей оси. 3
 - 9. Международная и национальные службы точного времени.
- 10. Передача точного времени в системе глобального спутникового позиционирования (GPS).
 - 11. Понятие прецессии и нутации.
 - 12. Учет влияния прецессии и нутации.
 - 13. Ограниченная задача 3-х тел. Области движения.
 - 14. Ограниченная задача 3-х тел. Точки либрации, вычисление их координат.
 - 15. Ограниченная задача 3-х тел. Движение в окрестности точек либрации.
 - 16. Канонические уравнения эллиптического движения, уравнения Лагранжа.
- 17. Наблюдения с современными панорамными приемниками изображений (ПЗС-матрицы) основа повышения точности массовых наземных определений координат звезд.
- 18. Краткая характеристика теории движения больших планет, астероидов, Луны, спутников планет и комет.
 - 19. Устойчивость и эволюция Солнечной системы.

Разлел 3.

Тест

- 1. Какая система Аристотеля стала первой научно обоснованной космологической моделью Вселенной?
 - Геоцентрическая
 - Биоцентрическая
 - Геоциничная
 - 2. Укажите новую космологическую модель
 - Гелиоцентричная
 - Гелиоцетрическая
 - Геоцентрическая
 - 3. Кто предложил новую космологическую модель?
 - Фридман
 - Эйнштейн
 - Коперник
 - 4. Разделом какой науки является космология?
 - Астрономии
 - Биологии
 - Это самостоятельная наука
 - 5. Что изучает космология?
 - Строение и эволюцию Земли

- Строение и эволюцию Вселенной
- Строение и эволюцию космоса
- 6. Какими методами проверяются теоретические модели, описывающие наиболее общие свойства Вселенной?
 - Опытами
 - Наблюдениями
 - Экспериментами
 - 7. Кем были разработаны первые космологические модели?
 - Фридманом
 - Эйнштейном
 - Коперником
 - 8. Какая из этих дисциплин не входит в основу космологии?
 - География
 - Физика
 - Математика
 - 9. Кто создал общую теорию относительности?
 - Эйнштейн
 - Фридман
 - Аристотель
 - 10. Что такое галактика?
 - Система из планет
 - Система из звезд
 - Воздушная оболочка

Вопросы для зачета

- 1. Астрономия древнейшая из наук.
- 2. Современные обсерватории.
- 3. Об истории возникновения названий созвездий и звезд.
- 4. История календаря.
- 5. Хранение и передача точного времени.
- 6. История происхождения названий ярчайших объектов неба.
- 7. Прецессия земной оси и изменение координат светил с течением времени.
- 8. Системы координат в астрономии и границы их применимости.
- 9. Античные представления философов о строении мира.
- 10. Точки Лагранжа.
- 11. Современные методы геодезических измерений.
- 12. История открытия Плутона и Нептуна.
- 13. Конструктивные особенности советских и американских космических аппаратов.
 - 14. Полеты АМС к планетам Солнечной системы.
 - 15. Проекты по добыче полезных ископаемых на Луне.
 - 16. Самые высокие горы планет земной группы.
 - 17. Современные исследования планет земной группы АМС.
 - 18. Парниковый эффект: польза или вред?
 - 19. Полярные сияния.
 - 20. Самая тяжелая и яркая звезда во Вселенной.
 - 21. Экзопланеты.
 - 22. Правда и вымысел: белые и серые дыры.
 - 23. История открытия и изучения черных дыр.
 - 24. Идеи множественности миров в работах Дж. Бруно.
 - 25. Идеи существования внеземного разума в работах философов-космистов.
 - 26. Проблема внеземного разума в научно-фантастической литературе.

- 27. Методы поиска экзопланет.
- 28. История радиопосланий землян другим цивилизациям.
- 29. История поиска радиосигналов разумных цивилизаций.
- 30. Методы теоретической оценки возможности обнаружения внеземных цивилизаций на современном этапе развития землян.
- 31. Проекты переселения на другие планеты: фантазия или осуществимая реальность.

8 Система оценивания планируемых результатов обучения

Форма контроля	За од		
	Миним. баллов	Макс. баллов	Всего
Текущий контроль:			
- устный опрос	1 балл	3 балла	
- участие в деловой игре	3 балла	5 баллов	
- контрольная работа	2 балла	5 баллов	
- тестирование	1 балл	3 балла	
- сообщение по теме занятия	3 балла	5 баллов	
- решение ситуационных задач	3 балла	5 баллов	
- участие в мини-лекции	1 балл	3 балла	
Промежуточная аттестация			40 баллов
(зачет)			
Итого за семестр (дисциплину)			100
зачёт			баллов

9 Учебно-методическое и информационное обеспечение дисциплины

9.1. Список основной учебной литературы

- 1. Перельман, Я. И. Занимательная астрономия / Я. И. Перельман. Москва : Издательство Юрайт, 2020. 182 с. (Открытая наука). ISBN 978-5-534-07253-2. Текст : электронный // ЭБС Юрайт [сайт]. URL: http://biblio-online.ru/bcode/453263
- 2. Э. В. Кононович Э.В. Общий курс астрономии/ В.И. Мороз; под ред. В.В. Иванова; Общий курс астрономии: учеб. пособие для ун-тов 2-е изд., испр. М. : Едиториал УРСС, 2004 530 с. [Электронный ресурс]. URL: https://elibrary.ru/item.asp?id=19446385
- 3. Куликовский, П. Г. Справочник любителя астрономии/ П. Г. Куликовский // Под. ред. В. Г. Сурдина. Изд. 6-е, испр. и доп. М.: Книжный дом «ЛИБРОКОМ», 2009 704 с.
- 4. Засов, А. В. Астрономия / А. В. Засов, Э. В. Кононович. М.:ФИЗМАЛИТ, 2011 262 с. [Электронный ресурс]. URL: https://www.elibrary.ru/item.asp?id=15250376
- 5. Мурзин, В.С. Астрофизика космических лучей: учебное пособие / В.С. Мурзин. М.:Логос, 2007 489 с. (Классический университетский учебник). ISBN 978-5-98704-171-6; [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=84789

9.2. Дополнительная литература

- 1. Фесенко, Борис Иванович. Астрономический калейдоскоп: вопросы и ответы [Текст]: Кн.для учащихся / Б.И. Фесенко. Москва: Просвещение, 1992 95 с
- 2. Миттон, Саймон. Астрономия [Текст] / С. Миттон, Ж. Миттон. Москва : Росмэн. 1995 160 с.
- 3. Дагаев, Михаил Михайлович. Наблюдения звездного неба [Текст] / М. М. Дагаев. 3-е изд., доп. М.: Наука, 1975 176 с.

- 4. Пухляков, Любим Андреевич. О взрыве планеты Фаэтон и происхождении спутников планет [Текст] / Л.А. Пухляков. Томск: Изд-во Томского ун-та, 1996 11 с.
- 5. Демин, В. Н. Тайны Вселенной [Текст] / В. Н. Демин. М.: Вече, 1998 476 с.
- 6. Бухман, Л.М. Концепции современного естествознания: учебное пособие / Л.М. Бухман, Н.С. Бухман. Самара: Самарский государственный архитектурностроительный университет, 2012 Ч.1 Физика и астрономия. 104 с. ISBN 978-5-9585-0473-2; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=142904
- 7. Журналы: «Астрономический журнал», «Успехи физических наук», «Соросовский образовательный журнал», «Земля и Вселенная», «Звездочет», «Физика в школе», «Квант», «Наука и жизнь», реферативные журналы: «Астрономия», «Исследование космического пространства».

9.3. Программное обеспечение

- Программный комплекс «Электронные журналы», используемый для учета и анализа успеваемости обучающихся
- Microsoft VisualFoxPro Professional 9/0 Win32 Single Academic OPEN (бессрочная), (лицензия 49512935);
- Microsoft Win Home Basic 7 Russian Academic OPEN (бессрочная), (лицензия 61031351),
- Microsoft Office 2010 Russian Academic OPEN, (бессрочная) (лицензия 61031351),
- Microsoft Internet Security&Accel Server Standart Ed 2006 English Academic OPEN, (бессрочная), (лицензия 41684549),
- Microsoft Windows Professional 7 Russian Upgrade Academic OPEN, (бессрочная), (лицензия 60939880),
- Microsoft Office Professional Plus 2010 Russian Academic OPEN, (бессрочная), (лицензия 60939880),
- Kaspersky Endpoint Security для бизнеса Расширенный Russian Edition. 1000-1499 Node 2 year Educational Renewal License (лицензия 2022-190513-020932-503-526), срок пользования с 2019-05-13 по 2021-04-13
- ABBYYFineReader 11 Professional Edition, (бессрочная), (лицензия AF11-2S1P01-102/AD),
 - Microsoft Volume Licensing Service, (бессрочная), (лицензия 62824441).

9.4. Профессиональные базы данных и информационные справочные системы современных информационных технологий:

- «Антиплагиат. ВУЗ». Лицензионный договор №194 от 22.03. 2018 года;
- Образовательная платформа ЮРАЙТ https://urait.ru
- Официальный Web-сайт CaxГУ http://sakhgu.ru/; caxгу.pф
- Система независимого компьютерного тестирования в сфере образования http://i-exam.ru/
 - Сайт научной электронной библиотеки eLIBRARY http://elibrary.ru
 - Сайт университетской библиотеки ONLINE http://www.biblioclub.ru/
 - Сайт электронно-библиотечной системы IPRbookshttp://www.iprbookshop.ru
 - Сайт информационной справочной системы Polpred.com http://polpred.com/
- Астрономическое общество. [Электронный ресурс] Режим доступа: http://www.sai.msu.su/EAAS
- Гомулина Н.Н. Открытая астрономия / под ред. В.Г. Сурдина. [Электронный ресурс] Режим доступа: http://www.college.ru/astronomy/course/content/index.htm

- Государственный астрономический институт им. П.К. Штернберга МГУ. [Электронный ресурс] Режим доступа: http://www.sai.msu.ru
- Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В.Пушкова РАН. [Электронный ресурс] — Режим доступа: http://www.izmiran.ru
- Компетентностный подход в обучении астрономии по УМК В.М.Чаругина. [Электронный ресурс] Режим доступа: https://www.youtube.com/watch?v=TKNGOhR3w1s&feature=youtu.be
- Корпорация Российский учебник. Астрономия для учителей физики. Серия вебинаров.

Часть 1 Преподавание астрономии как отдельного предмета. [Электронный ресурс] — Режим доступа: https://www.youtube.com/watch?v=YmE4YLArZb0

- Часть 2 Роль астрономии в достижении учащимися планируемых результатов освоения основной образовательной программы СОО. [Электронный ресурс] Режим доступа: https://www.youtube.com/watch?v=gClRXQ-qjaI
- Новости космоса, астрономии и космонавтики. [Электронный ресурс] Режим доступа: http://www.astronews.ru/
- Общероссийский астрономический портал. Астрономия РФ. [Электронный ресурс] Режим доступа: http://xn--80aqldeblhj0l.xn--p1ai/
- Российская астрономическая сеть. [Электронный ресурс] Режим доступа: http://www.astronet.ru
- Универсальная научно-популярная онлайн-энциклопедия «Энциклопедия Кругосвет». [Электронный ресурс] Режим доступа: http://www.krugosvet.ru
- Энциклопедия «Космонавтика». [Электронный ресурс] Режим доступа: http://www.cosmoworld.ru/spaceencyclopedia
 - http://www.astro.websib.ru/
 - http://www.myastronomy.ru
 - http://class-fizika.narod.ru
 - https://sites.google.com/site/astronomlevitan/plakaty
 - http://earth-and-universe.narod.ru/index.html
 - http://catalog.prosv.ru/item/28633
 - http://www.planetarium-moscow.ru/
 - https://sites.google.com/site/auastro2/levitan
 - http://www.gomulina.orc.ru/
 - http://www.myastronomy.ru

10 Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидов

Учебные и учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для слепых и слабовидящих:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;

- письменные задания оформляются увеличенным шрифтом;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

Для глухих и слабослышащих:

- лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования;
 - письменные задания выполняются на компьютере в письменной форме;
- экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.

Для лиц с нарушениями опорно-двигательного аппарата:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для слепых и слабовидящих:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.

Для глухих и слабослышащих:

- в печатной форме;
- в форме электронного документа.

Для обучающихся с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

Для слепых и слабовидящих:

- автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих;
 - акустический усилитель и колонки;

Для обучающихся с нарушениями опорно-двигательного аппарата:

- передвижными, регулируемыми эргономическими партами СИ-1;
- компьютерной техникой со специальным программным обеспечением.

11 Материально-техническое обеспечение дисциплины

- 1. Учебники и учебные пособия, имеющиеся в фондах библиотеки;
- 2. Доступ к Интернет-ресурсам;
- 3. Электронные и Интернет-учебники.

Материально-техническое обеспечение включает в себя специально оборудованные кабинеты и аудитории: компьютерные классы, аудитории, оборудованные мультимедийными средствами обучения.

Использование электронных учебников в процессе обучения должно обеспечиваться наличием во время самостоятельной подготовки рабочего места для каждого обучающегося в компьютерном классе, имеющего выход в Интернет, в соответствии с объемом изучаемой дисциплины.