ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САХАЛИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Аннотация рабочей программы дисциплины Б1.В.05 «Компьютерная графика»

Направление подготовки 01.03.02 Прикладная математика и информатика

Профиль подготовки Системное программирование и компьютерные технологии

1. Цели освоения дисциплины

Целью освоения дисциплины «Компьютерная графика» является ознакомление студентов с основными понятиями графического программирования, рассматривая его как неотъемлемую часть математической науки и науки программирования. Заложить теоретические основы для решения задач графического отображения информации.

2. Место дисциплины в структуре образовательной программы

Дисциплина «Компьютерная графика» относится к разделу обязательных дисциплин вариативной части (Б1.В.5). Для освоения данной дисциплины студент должен владеть основными понятиями дисциплин таких как: Алгебра и аналитическая геометрия, Компьютерная геометрия. Знания и навыки, сформированные в процессе изучения дисциплины «Компьютерная графика», необходимы для освоения других дисциплин, обеспечивающих профильность подготовки бакалавра, таких как «Компьютерное моделирование».

3. Требования к результатам освоения содержания дисциплины

Дисциплина нацелена на формирование общепрофессиональных компетенций ОПК-1, ОПК-2, ОПК-3, ОПК-4 и профессиональных компетенций ПК-5, ПК-6, ПК-7, ПК-10 выпускника.

общепрофессиональные компетенции (ОПК):

,	CCCHORMIDIDE ROWNIC CONTROL
ОПК-1	– способностью использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с прикладной математикой и информатикой;
ОПК-2	 – способностью приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии;
ОПК-3	 способностью к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям;
ОПК-4	- способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.

профессиональные компетенции (ПК):

проект	проектная и производственно-технологическая деятельность:						
ПК-2	 – способностью понимать, совершенствовать и применять современный математический аппарат; 						
ПК-5	- способностью осуществлять целенаправленный поиск информации о новейших научных и технологических достижениях в информационно- телекоммуникационной сети "Интернет" (далее – сеть "Интернет") и в других источниках;						
ПК-7	 способностью к разработке и применению алгоритмических и программных решений в области системного и прикладного программного обеспечения; 						

В результате освоения дисциплины студент должен:

<u>Знать:</u>

- основные определения и понятия компьютерной графики;
- основные приемы создания графических примитивов;
- основные алгоритмы компьютерной графики.

Уметь:

 Понимать и применять на практике компьютерные технологии для решения различных задач.

Владеть:

- Навыками создания графических примитивов на плоскости;
- Навыками создания графических примитивов в пространстве;
 Методами работы с отображением внешних и внутренних связей.

4. Структура дисциплины «Компьютерная графика»

Для очной формы обучения общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа, в том числе лабораторные занятия -30 часов, самостоятельная работа студента -42 часа. Вид промежуточной аттестации - зачет.

№ п/п	Семестр	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)					Формы текущего контроля успеваемости (по неделям	
		всего	лаб	срс	контроль	зет	семестра) Форма промежуточной аттестации (по семестрам)	
1	7	72	30	42		2	Зачет	
ИТ	0Г0	72	30	42		2		

№ п/п	Раздел Дисциплины	Семестр	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)				Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной		
			всего	лаб	срс	зач	аттестации (по семестрам)		
	4 семестр								
1.	Глобальные компьютерные сети: основные понятия, принципы функционирования. Ресурсы сети Internet.	7	4	2	2		Собеседование по теме		
2.	2. Принципы разработки Web- документов.		18	8	10		Собеседование по теме		

3.	3. Язык гипертекстовой разметки страниц HTML.		50	20	30	Собеседование по теме
	Итого за 4 семестр		72	30	42	Зачет

Содержание разделов дисциплины

Раздел 1. Стандарты в области разработки графических систем.

Стандартизация в машинной графике. Растровая графика. Векторная графика. Взаимодействие растровой и векторной графики, преимущества и недостатки различных видов графики. Координатный метод. Аффинные преобразования на плоскости. Трехмерное аффинное преобразование. Связь преобразований объектов с преобразованиями координат.

Раздел 2. Базовые растровые алгоритмы.

Алгоритм Брезенхама растровой дискретизации отрезка. Алгоритм Коэна-Сазерленда для отсечения прямой. Алгоритм Брезенхама растровой дискретизации окружности. Алгоритм Брезенхама растровой дискретизации эллипса. Геометрический алгоритм для кривой Безье.

Раздел 3. Методы и алгоритмы трехмерной графики.

Модели описания поверхностей. Аналитическая поверхность. Векторная полигональная модель. Визуализация объемных изображений: каркасная визуализация, показ с удалением невидимых точек. Изображение трехмерных объектов: куб, сфера, тор. Закрашивание поверхностей. Наложение текстуры на поверхность трехмерного объекта.